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Phase transitions of the binary production 2A\3A, 4A\B model
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Phase transitions of the 2A→3A, 4A→B reaction-diffusion model is explored by dynamical,N-cluster
approximations and by simulations. The model exhibits site occupation restriction and explicit diffusion of
isolated particles. While the site mean-field approximation shows a single transition at zero branching rate
introduced by O´ dor @G. Ódor, Phys. Rev. E67, 056114~2003!#, N.2 cluster approximations predict the
appearance of another transition line for weak diffusion~D! as well. The latter phase transition is continuous,
occurs at finite branching rate, and exhibits different scaling behavior. I show that the universal behavior of
these transitions is in agreement with that of the difffusive pair contact process model both on the mean-field
level and in one dimension. Therefore this model exhibiting annihilation by quadruplets does not fit in the
recently suggested classification of universality classes of absorbing state transitions in one dimension@J.
Kockelkoren and H. Chate´, Phys. Rev. Lett.90, 125701~2003!#. For high diffusion rates the effective 2A
→3A→4A→B reaction becomes irrelevant and the model exhibits a mean-field transition only. The two
regions are separated by a nontrivial critical end point atD* .
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Phase transitions in nonequilibrium systems, which do
possess Hermitian Hamiltonian may appear in models
population, epidemics, catalysis, cooperative transport@1#,
enzyme biology@2#, and markets@3#, for example. Reaction
diffusion systems are of primary interest since other none
librium models often can be mapped onto them@4#. The
classification of universality classes in reaction-diffusion s
tems@5,6# has recently got some impetus. In these syste
particle creation, annihilation, and diffusion processes co
pete, and by tuning the control parameters phase trans
may occur from an active steady state to an inactive, abs
ing state of zero density. The fluctuations in the absorb
state are so small, so that systems cannot escape fro
hence such phase transitions may emerge in one dimen
already. Several systems with binary, triplet, or quadrup
particle reactions have been investigated numerically and
classified type of critical phase transitions were fou
@7–27#. Solid field theoretical treatment exists for boson
binary production systems only@26#, but this is not appli-
cable for the active and critical states of site restricted m
els, since it cannot describe a steady state with finite den

The mean-field solution of general models,

nA→
s

~n1k!A, mA→
l

~m2 l !A ~1!

~with n.1, m.1, k.0, l .0, andm2 l>0) resulted in a
series of universality classes depending onn andm @24#. In
particular for then5m symmetrical case the density of pa
ticles above the critical point (sc.0) scales as

r}us2scub, ~2!

with bMF51, while at the critical point it decays as

r}t2a, ~3!

with aMF5bMF/n uu
MF51/n @23,24# ~here ‘‘MF’’ denotes

mean-field value!. On the other hand for then,m asymmet-
ric case continuous phase transitions at zero branching
sc50 occur with
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bMF51/~m2n!, aMF51/~m21!. ~4!

For n.m the mean-field solution provides first-order tran
tion.

The upper critical dimension for such systems is deba
@6,21,23,24# but should be quite low (dc5122) allowing a
few anomalous critical transitions only. For example,dc,1
was confirmed by simulations in case of the asymmet
binary production 2A→4A, 4A→2A model @25#. It was
also pointed out there thatN.1 cluster mean-field approxi
mation, which takes into account the diffusion of particle
would provide a more adequate description of such mod
Earlier studies have shown@28–30# that there exist models
with first-order transitions in the site mean-field approxim
tion that changes to continuous one in higher level of clus
approximations. Dependence on the diffusion was found
be important in binary production models@8,10# and it
turned out that at leastN.2 level of approximation is
needed for an adequate description@17,20#.

In this paper I investigate the 2A→3A, 4A→B model
and show that the diffusion plays an important role: it intr
duces a different critical point besides the one ats50
branching rate. I show by simulations that this transition
not mean-field type in one dimension but belongs to the c
of the 2A→3A, 2A→B so-called diffusive pair contact pro
cess~PCPD! model. The model described here is defined a
parametrized following the notation of Ref.@8# by the rules

AAB,BAA→AAA with rate s5~12p!~12D !/2,

AAAA→BBBB with rate l5p~12D !,

AB↔BA with rate D. ~5!

Here D denotes the diffusion probability andp is the other
control parameter of the system.
©2004 The American Physical Society12-1
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GÉZA ÓDOR PHYSICAL REVIEW E 69, 036112 ~2004!
Dynamical cluster mean-field approximations have be
introduced for nonequilibrium models by Refs.@31,32#. The
master equations forN51,2,3,4,5 block probabilities wer
set up:

]PN~$si%!

]t
5 f „PN~$si%!…, ~6!

where site variables may take valuessi5B,A. Taking into
account spatial reflection symmetries ofPN($si%) this in-
volves 20 independent variables in case ofN55. The master
equation~6! was solved numerically using the Runge-Ku
algorithm for N52,3,4,5 by severalD and p values. The
particle „r(p,D)… and pair„r2(p,D)… densities were deter
mined byPN($si%). For strong diffusion rates only a mean
field phase transition occurs ats50 with b51/2 anda51/3
exponents belonging to the set of classes~4! discovered in
Ref. @24#.

However forN.1 and weak diffusion rates other pha
transitions points emerge as well, withsc.0. This means
that for intermediates and smallD values the absorbing
state becomes stable, as one can see in Fig. 1. Simulatio
one dimension confirm this~see later!.

In the active phases in the neighborhood of thesc.0
transition points, power-law fitting of the form~2! to the
mean-field data point resulted inb51 for all N.1 levels of
approximations. On the other hand for the pair density in p
approximations one obtainsb51 again, such as in the cas
of the PCPD model for low diffusions@8#. This anomaly
disappears forN53,4,5 and the fitting results inb52 for
pairs.

At the sc.0 critical points the dynamical behavior
power-law type~3! with a51/2 for N53,4,5. Again the pair
approximation gives the strange result:a51 ~such as in Ref.
@8#!. The failure of the pair approximation also appears in
inactive region, where it results in exponential density dec
In contrast with this theN53,4,5 approximations show
power laws here witha51 for particles anda52 for pairs.
The abovea andb exponents occurring by low diffusions a

FIG. 1. Steady state density inN55 level approximation for
diffusion ratesD50.5, 0.4, 0.35, 0.3, 0.2, 0.1, 0.05, 0.01, 0.01~top
to bottom curves!. A similar scenario appears forN52,3,4.
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the critical points and inactive phases in the phase diag
away from thes50 transition are different from those of th
site mean-field values~4!. This can be explained by accep
ing that the dominant decay process fors.0, D,D* , is
2A→B ~via 2A→3A→4A→B) instead of the
4A→B—which is the only mode of decay ats50. Alto-
gether one can find very similar cluster mean-field behav
as in case of the PCPD model@8,20#.

One can also observe that by increasingD from zero the
PCPD-like transitions disappear at someD* value when the
r~`! steady state curve touches ther50 axis. ForD>D*
there is no absorbing state in the system and a critical
point appears withb52 ~parabolic! singularity atsc* . For
N55 the end point is located atD* 50.301(1), pc*
50.53(1).

To test these analytical findings I have performed simu
tions in one dimension. These were carried out onL
5(1 – 5)3105 sized systems with periodic boundary cond
tions. The initial states were half-filled lattices with ra
domly distributedA’s and the density of particles is followe
up to 53108 Monte Carlo steps~MCS’s!. One MCS consists
of the following processes. A particle, a direction, and
numberxP(0,1) are selected randomly; ifx,D, a site ex-
change is attempted with one of the randomly selected em
nearest neighbors; else ifD<x,(D1l), four neighboring
particles are removed; else one particle is created at an em
site in the randomly selected direction following a pair
A’s. In each MCS the time is updated by 1/n, wheren is the
number of particles.

First I followed the density of particles for a smalls ~at
p50.95) at diffusion ratesD50.5 andD50.2. In both cases
a power-law decay witha50.5 exponent could be observe
hence an inactive phase with decay of theAA→B process—
valid in one dimension@34#—was identified.

The critical points were determined by calculating the
cal slopes defined as

ae f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~7!

~where I usedm52) for D50.2,0.5,0.747. As Fig. 2 show
the local slopes curve forD50.5, p50.15850(2) extrapo-
lates toa50.21~1!. This value agrees with that of the PCP
model@20,21#. Other curves exhibit curvature for long time
i.e., for p,0.1585 they veer up~active phase!, while for p
.0.1585 they veer down~absorbing phase!. The local slopes
figure shows similar strong correction to scaling as in case
the PCPD model, i.e., some curves that seem to be super
cal veer down aftert.;106 MCS’s. Similar results are ob
tained by othersc.0 transitions. ForD50.2, when the
critical point is at p50.0892(1), the local slopes for the
density decay predictsa50.21~2!. Repeating the simulation
at D50.9 no absorbing phase has been found~up to p
<0.9999), the steady state density disappears monotono
ass→0. At s50 the density decays witha51/3 valid for the
4A→B process in one dimension@35#.

The steady state density in the active phase near the c
cal phase transition point is expected to scale asr(`)}up
2-2
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2pcub. Using the local slopes method one can get a pre
estimate forb and see the corrections to scaling:

be f f~pi !5
ln r~`,pi !2 ln r~`,pi 21!

ln~pi !2 ln~pi 21!
. ~8!

The steady state density was determined by running
simulations in the active phase:e5pc2pi.0, by averaging
over;100 samples in a time window following the level-o
is achieved. As one can see in Fig. 3 the effective expon
tends tob50.40~2! as e→B both for D50.5 andD50.2
diffusions. These values are in agreement with that of
one-dimensional PCPD model@20,21#. Again assuming loga-
rithmic corrections as in Ref.@20# of the form

r~`,e!5$e/@a1b ln~e!#%b ~9!

FIG. 2. ae f f in the one-dimensional 3A→4A, 4A→B model at
D50.5. Different curves correspond top50.1583, 0.1584, 0.1585
0.15852, 0.15853, 0.1586, 0.1587, 0.159~top to bottom!.

FIG. 3. be f f as the function ofe in the one-dimensional 2A
→3A, 4A→B model. The bullets correspond toD50.5, and the
boxes toD50.2, and the diamonds toD50.9 diffusion rate. The
solid line shows a quadratic fitting of the form~10!.
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one can obtainp50.1585(1) andb50.38~1! for D50.5 and
p50.0892(1) andb50.41~3! for D50.2, which agrees with
the previous values within numerical accuracy@11,24#. Alto-
gether one cannot see relevant logarithmic corrections for
diffusion rates investigated here.

In case of D50.9, sc50 one can seeb50.50~1! in
agreement with theN53,4,5 cluster mean-field approxima
tion results. A quadratic fitting of the form

be f f5b2aex2be2x ~10!

results in a50.195, b50.158, x50.214, andb50.51~1!.
This suggests that the effective 2A→B process is weake
now than the 2A→3A, leaving the transition atsc50. The
phase diagram for different levels of approximations as w
as MC data are shown in Fig. 4. As one can see approxi
tions tend towards the simulated points by increasingN.

Similar reentrant phase diagram has been observed in
of the unary production, triplet annihilation model (A
→2A,3A→B) @36#, and in a variant of the NEKIM mode
@37#. In all cases the diffusion competes with particle rea
tion processes, and the bare parameters should some
form renormalized reaction rates which govern the evolut
over long times and distances, the details have not b
worked out.

Finite size scaling investigations atD50.5 and pc
50.1585 were performed for system sizes:Li
532,64,128, . . . ,4096. The quasi-steady-state density~aver-
aged over surviving samples! is expected to scale accordin
to

rs~`,pc ,L !}L2b/n', ~11!

while the characteristic lifetime for half of the samples
reach the absorbing state scales with the dynamical expo
Z as

FIG. 4. Phase diagram. Stars correspond toN52, boxes toN
53, bullets toN54, and triangles toN55 cluster mean-field ap-
proximations. Diamonds denote one-dimensional simulation d
The lines serve to guide the eye. At thes50 line a mean-field
transition occurs.
2-3
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t~pc ,L !}LZ. ~12!

These quantities were analyzed by the local slopes:

Ze f f~L !5
ln t~Li !2 ln t~Li 21!

ln Li2 ln Li 21
, ~13!

b/n'~L !5
ln rs~Li !2 ln rs~Li 21!

ln Li2 ln Li 21
. ~14!

Linear extrapolation toL→` results in Z51.80(15) and
b/n'50.40(3). These values corroborate that the transit
is of PCPD type.

In conclusion, theN cluster mean-field study of the binar
production 2A→3A, 4A→B model has shown the appea
ance of another critical transition with nonzero producti
rate for low diffusions. While the pair approximation resu
in somewhat odd results—such as in the case of other bi
production systems@33# — the N53,4,5 levels coherently
exhibit PCPD-like mean-field critical behavior for the
phase transition points and within the absorbing phase. T
transition line disappears at a critical end point forD>D*
characterized byb52 order parameter singularity, and fo
high diffusion rates thesc50 critical point remains only in
the system, predicted by the site mean-field approximat
The utmost importance of diffusion dependence and the
respondingN.2 cluster mean-field approximations is dem
onstrated in this study.

Extensive simulations in one dimension have confirm
the existence of the nontrivial transition for low diffusion
03611
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By these transition points the critical behavior agrees w
that of the latest results obtained for the PCPD model. The
fore this model does not fit in the table of universality class
suggested for such models in one dimension@21#. The reason
behind this discrepancy might be that in Ref.@21# low diffu-
sions have not been investigated or there is a lack of c
plete site exclusion in their model. Site exclusion has be
shown to be relevant in multispecies reaction-diffusion s
tems and in binary production systems@38#.

An interesting, open problem is the exploration of t
phase structure of this system in higher dimensions. T
agreement of one-dimensional results with those of the c
ter mean field shows that similar rich phase structure m
emerge in higher dimensions, too. That would mean that
effective 2A→B reaction is generated via 2A→3A→4A
→B again. These results raise the possibility that suc
mechanism also emerges by unary production systems~for
example, byA→2A, 4A→B) and one should find a di
rected percolation@7# transition instead of the mean-field on
suggested by perturbative renormalization study@35# of such
models. This would affect the classification of fundamen
universality classes of RD systems and may point out
weak points of the perturbative renormalization. Another i
portant point to be investigated is the scaling behavior at
critical end point.
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@5# G. Ódor, Rev. Mod. Phys~to be published!, e-print cond-mat/

0205644.
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@27# G. Ódor, Phys. Rev. E65, 026121~2002!.
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@37# N. Menyhárd and G. Ódor, Phys. Rev. E68, 056106~2003!.
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