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Phase transitions of the binary production 2A—3A, 4A— model
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Phase transitions of theA2-3A, 4A—J reaction-diffusion model is explored by dynamichkcluster
approximations and by simulations. The model exhibits site occupation restriction and explicit diffusion of
isolated particles. While the site mean-field approximation shows a single transition at zero branching rate
introduced by @or [G. Odor, Phys. Rev. 67, 056114(2003], N>2 cluster approximations predict the
appearance of another transition line for weak diffusipn as well. The latter phase transition is continuous,
occurs at finite branching rate, and exhibits different scaling behavior. | show that the universal behavior of
these transitions is in agreement with that of the difffusive pair contact process model both on the mean-field
level and in one dimension. Therefore this model exhibiting annihilation by quadruplets does not fit in the
recently suggested classification of universality classes of absorbing state transitions in one difdension
Kockelkoren and H. ChatePhys. Rev. Lett90, 125701(2003]. For high diffusion rates the effectiveA?
—3A—4A— O reaction becomes irrelevant and the model exhibits a mean-field transition only. The two
regions are separated by a nontrivial critical end poirD &t
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Phase transitions in nonequilibrium systems, which do not BYF=1/(m—n), aMF=1/(m-1). (4
possess Hermitian Hamiltonian may appear in models of
population, epidemics, catalysis, cooperative transfpbjt . . . . )
enzyme biologyi2], and market$3], for example. Reaction- For n>m the mean-field solution provides first-order transi-
diffusion systems are of primary interest since other nonequiL'O”- . ) _ _
librium models often can be mapped onto thé4). The The upper critical dlmenspn for such systems is debated
classification of universality classes in reaction-diffusion sys{6:21,23,24 but should be quite lowd.=1-2) allowing a
tems[5,6] has recently got some impetus. In these systemfW anomalous critical transitions only. For example<1
particle creation, annihilation, and diffusion processes comwas confirmed by simulations in case of the asymmetric,
pete, and by tuning the control parameters phase transitidnary production 2—4A, 4A—2A model [25]. It was
may occur from an active steady state to an inactive, absortflS0 pointed out there th&t>1 cluster mean-field approxi-
ing state of zero density. The fluctuations in the absorbingnation, which takes into account the diffusion of particles,
state are so small, so that systems cannot escape from Yould provide a more adequate description of such models.
hence such phase transitions may emerge in one dimensidrlier studies have showi28—3Q that there exist models
already. Several systems with binary, triplet, or quadruplet{\’ith first-order transitions in the site_megn-field approxima-
particle reactions have been investigated numerically and urion that changes to continuous one in higher level of cluster
classified type of critical phase transitions were found@Pproximations. Dependence on the diffusion was found to
[7—27]. Solid field theoretical treatment exists for bosonic,Pe important in binary production mode[$,10] and it
binary production systems onf26], but this is not appli- turned out that at leasN>2 level of approximation is
cable for the active and critical states of site restricted modneeded for an adequate descriptjai7,20.

els, since it cannot describe a steady state with finite density. In this paper I investigate theA2-3A, 4A—& model
The mean-field solution of general models, and show that the diffusion plays an important role: it intro-

duces a different critical point besides the one oat0
branching rate. | show by simulations that this transition is
not mean-field type in one dimension but belongs to the class
of the 2A—3A, 2A—J so-called diffusive pair contact pro-
cess(PCPD model. The model described here is defined and
parametrized following the notation of RéB] by the rules

[od N
nA—(n+k)A, mA—(m—I1)A (1)

(with n>1, m>1, k>0, I>0, andm—1=0) resulted in a
series of universality classes dependingnoandm [24]. In
particular for then=m symmetrical case the density of par-
ticles above the critical pointe{.>0) scales as

px|o—al?, @) AAD,OAA—AAA withrate o=(1-p)(1-D)/2,
with pMF=1, while at the critical point it decays as AAAA-PPPD  withrate A=p(1-D),
pxt*, ©)

with aMFZBMF/Vh/lel/n [23,24] (here “MF” denotes AJ—A withrate D. (5)

mean-field valug On the other hand for the<m asymmet-
ric case continuous phase transitions at zero branching ratéere D denotes the diffusion probability armlis the other
o.=0 occur with control parameter of the system.
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06 ' ' ' ' the critical points and inactive phases in the phase diagram
away from theo=0 transition are different from those of the
site mean-field value&t). This can be explained by accept-
ing that the dominant decay process @0, D<D*, is
04 b _ 2A—  (via 2A—3A—4A—J) instead of the
4A— J—which is the only mode of decay at=0. Alto-
& gether one can find very similar cluster mean-field behavior
as in case of the PCPD modd,20].

One can also observe that by increasihdrom zero the
PCPD-like transitions disappear at soDé& value when the
p(0) steady state curve touches the0 axis. ForD=D*

there is no absorbing state in the system and a critical end
point appears withB=2 (paraboli¢ singularity ato; . For
03 0.2 oa 0.6 0’8 , N=5 the end point is located abD*=0.3041), p;
(1-p)~o =0.531).

To test these analytical findings | have performed simula-
tions in one dimension. These were carried out lon
=(1-5)x10° sized systems with periodic boundary condi-
tions. The initial states were half-filled lattices with ran-

Dynamical cluster mean-field approximations have beer(]jomly distributedA’s and the density of particles is followed

introduced for nonequilibrium models by Ref81,32. The Up to 5x 10° Monte Carlo stepgMCS's). One MCS consists

. o of the following processes. A particle, a direction, and a
?;SJET equations foN=1,2,3,4,5 block probabilities were numberx e (0,1) are selected randomly; x<D, a site ex-

change is attempted with one of the randomly selected empty

nearest neighbors; elseif<x<(D+\), four neighboring
=f(Py({si})), (6)  particles are removed; else one particle is created at an empty

site in the randomly selected direction following a pair of

A’s. In each MCS the time is updated bynliwheren is the
where site variables may take valugs-&J,A. Taking into  numper of particles.

account spatial reflection symmetries Bf({s;}) this in- First | followed the density of particles for a smatl(at
volves 20 independent variables in caséef5. The master p=0.95) at diffusion rate® = 0.5 andD =0.2. In both cases
equation(6) was solved numerically using the Runge-Kutta 3 power-law decay witlx=0.5 exponent could be observed,
algorithm for N=2,3,4,5 by severaD and p values. The hence an inactive phase with decay of &&— & process—
particle (o(p,D)) and pair(p,(p,D)) densities were deter- yalid in one dimensiofi34}—was identified.

mined byPy({si}). For strong diffusion rates only a mean-  The critical points were determined by calculating the lo-
field phase transition occurs at=0 with 3=1/2 anda=1/3  cal slopes defined as

exponents belonging to the set of clas§ésdiscovered in
Ret 1241 ~InLp(t)/p(t/m)]

However forN>1 and weak diffusion rates other phase ae(t)=
transitions points emerge as well, with,>0. This means In(m)
that for intermediatesr and smallD values the absorbing
state becomes stable, as one can see in Fig. 1. Simulations(where | usedn=2) for D=0.2,0.5,0.747. As Fig. 2 shows
one dimension confirm thisee later. the local slopes curve fdb=0.5, p=0.15850(2) extrapo-

In the active phases in the neighborhood of the>0 lates toa=0.21(1). This value agrees with that of the PCPD
transition points, power-law fitting of the fornt2) to the  model[20,21. Other curves exhibit curvature for long times,
mean-field data point resulted =1 for all N>1 levels of i.e., for p<0.1585 they veer ugactive phasg while for p
approximations. On the other hand for the pair density in pair>0.1585 they veer dow(absorbing phageThe local slopes
approximations one obtain8=1 again, such as in the case figure shows similar strong correction to scaling as in case of
of the PCPD model for low diffusion§8]. This anomaly the PCPD model, i.e., some curves that seem to be supercriti-
disappears foN=3,4,5 and the fitting results ig=2 for  cal veer down aftet>~ 10° MCS’s. Similar results are ob-
pairs. tained by othera.>0 transitions. ForD=0.2, when the

At the o.>0 critical points the dynamical behavior is critical point is atp=0.08941), the local slopes for the
power-law type(3) with «=1/2 forN=3,4,5. Again the pair density decay predicts=0.21(2). Repeating the simulations
approximation gives the strange resuit=1 (such as in Ref. at D=0.9 no absorbing phase has been foung to p
[8]). The failure of the pair approximation also appears in the<0.9999), the steady state density disappears monotonously
inactive region, where it results in exponential density decayaso—0. At =0 the density decays with=1/3 valid for the
In contrast with this theN=23,4,5 approximations show 4A—J process in one dimensid35].
power laws here withw=1 for particles andv=2 for pairs. The steady state density in the active phase near the criti-
The abover and 8 exponents occurring by low diffusions at cal phase transition point is expected to scalep@s)«|p

FIG. 1. Steady state density =5 level approximation for
diffusion ratesD=0.5, 0.4, 0.35, 0.3, 0.2, 0.1, 0.05, 0.01, 0(@dp
to bottom curvep A similar scenario appears fof=2,3,4.
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FIG. 2. acyt in the one-dimensional8—4A, 4A—(J model at FIG. 4. Phase diagram. Stars correspondNte2, boxes toN
D=0.5. Different curves correspond po=0.1583, 0.1584, 0.1585, =3, bullets toN=4, and triangles ttN\=5 cluster mean-field ap-

0.15852, 0.15853, 0.1586, 0.1587, 0.1&p to bottom. proximations. Diamonds denote one-dimensional simulation data.

The lines serve to guide the eye. At tlee=0 line a mean-field
—pdl?. Using the local slopes method one can get a preciseansition occurs.
estimate forB and see the corrections to scaling:
one can obtaip=0.1585(1) an¢3=0.391) for D=0.5 and
In p(,p;)—Inp(°,pi_1) p=0.0892(1) ang3=0.41(3) for D=0.2, which agrees with
Beri(pi) = In(p;)—In(p;_1) : (8 the previous values within numerical accurdtg,24. Alto-
' 1 gether one cannot see relevant logarithmic corrections for the
The steady state density was determined by running th@iffusion rates investigated here. ,
simulations in the active phase= p.— p;>0, by averaging In case ofD=0.9, 5,=0 one can seg3=0.501) in
over ~100 samples in a time window following the level-off 29reement with th&i=3,4,5 cluster mean-field approxima-
is achieved. As one can see in Fig. 3 the effective exponerfion results. A quadratic fitting of the form
tends to3=0.402) as e—~J both for D=0.5 andD=0.2

—n_ _ 2
diffusions. These values are in agreement with that of the Beti=pB—ae ~be™ (10
one-dimensional PCPD mod&l0,21]. Again assuming loga- o _ _ _
rithmic corrections as in Ref20] of the form re;ults ina=0.195, b_0'158'_ x=0.214, andﬂ—.0.51(1).
This suggests that the effectiveA2-J process is weaker
e)={el[a+b] B 9 now than the 2—3A, leaving the transition ai.=0. The
p(x,e)={ella n(e)l} © phase diagram for different levels of approximations as well
0.7 . . . as MC data are shown in Fig. 4. As one can see approxima-

tions tend towards the simulated points by increading
Similar reentrant phase diagram has been observed in case
of the unary production, triplet annihilation modeA (

06 ] —2A,3A—J) [36], and in a variant of the NEKIM model
[37]. In all cases the diffusion competes with particle reac-
tion processes, and the bare parameters should somehow

ir i form renormalized reaction rates which govern the evolution
over long times and distances, the details have not been

0.5 |

B eff

] worked out.
Finite size scaling investigations @ =0.5 and p.
04 7 =0.1585 were performed for system sizest;

i =32,64,128. . .,4096. The quasi-steady-state densityer-
aged over surviving samples expected to scale according
to

0.3

1 1 1
0 0.002 0.004 0.006 0.008

& ps(%©,pe, L)L AL, (11)

FIG. 3. Bess as the function ofe in the one-dimensional &
—3A, 4A—J model. The bullets correspond B=0.5, and the ~ While the characteristic lifetime for half of the samples to
boxes toD=0.2, and the diamonds #© =0.9 diffusion rate. The reach the absorbing state scales with the dynamical exponent
solid line shows a quadratic fitting of the for(h0). Zas
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7(pe,L)oxLZ. (12 By these transition points the critical behavior agrees with
that of the latest results obtained for the PCPD model. There-
These quantities were analyzed by the local slopes: fore this model does not fit in the table of universality classes

suggested for such models in one dimeng$@H. The reason

In7(L;j)—In7(Li-1) behind this discrepancy might be that in Rgf1] low diffu-
Zerr(L)= InLi—InL;_; ' (13 sions have not been investigated or there is a lack of com-
plete site exclusion in their model. Site exclusion has been
Inps(Li)—Inpg(Li_1) shown to be relevant in multispecies reaction-diffusion sys-
Blv, (L)= (14 tems and in binary production systeff&s].

InLi=InLi— An interesting, open problem is the exploration of the

phase structure of this system in higher dimensions. The
agreement of one-dimensional results with those of the clus-
ter mean field shows that similar rich phase structure may
emerge in higher dimensions, too. That would mean that the
effective 2A—J reaction is generated viaA2-3A—4A

Linear extrapolation td.—co results inZ=1.80(15) and
Blv, =0.40(3). These values corroborate that the transition
is of PCPD type.

In conclusion, theéN cluster mean-field study of the binary
production 23‘_’3A'. 4A_>@ m_qdel hgs shown the appear- _ o again. These results raise the possibility that such a
ance of another critical transition with nonzero production . 12nism also emerges by unary production sysiéons
rate for low diffusions. While the pa_\ir approximation resqlts example, byA—2A, 4A—%) and one should find a di-
in somewhat odd results—such as in the case of other binagy.ted percolatiofi7] transition instead of the mean-field one
production system$33]—the N=3,4,5 levels coherently g ,qqested by perturbative renormalization sti&5] of such
exhibit PCPD-like mean-field critical behavior for these nqqels. This would affect the classification of fundamental
phas-e.tran_smon. points and Wlthln_the absorb[ng phase. Th'ﬁniversality classes of RD systems and may point out the
transition line disappears at a critical end point BED™ \\aak noints of the perturbative renormalization. Another im-

characterized by3=2 order parameter singularity, and for ,ortant point to be investigated is the scaling behavior at the
high diffusion rates ther.=0 critical point remains only in  yitical end point.

the system, predicted by the site mean-field approximation.
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